
Arduino 101
Hands-on: Tone

Project Description
This project will be a small diversion to demonstrate other ways
the Arduino can be used for output. In this case, we're going to
generate some tones on a piezo speaker.

Required Parts
1 piezo element

Schematic

Circuit

NOTES: You don't need to remove the parts you have on your
breadboard, but if you have a wire connected to the GND pin
indicated on the diagram, then remove it before placing the
piezo. Your piezo element should fit perfectly between the GND
and D10 header connections – just make sure you don't plug it
into AREF!

Copyright ©2012 by Nicholas Borko. All Rights Reserved.
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Code
// Tone Example Sketch for Arduino 101
// by Nick Borko

void setup() {
 pinMode(10, OUTPUT);
}

void loop() {
 tone(10, 293, 250);
 delay(250);
 tone(10, 329, 300);
 delay(400);
 tone(10, 261, 350);
 delay(500);
 tone(10, 130, 450);
 delay(550);
 tone(10, 196, 1000);
 delay(5000);
}

Discussion
The tone() function can be used to generate tones on an output
pin. It takes parameters for a pin number, frequency and,
optionally, a duration. This is one way the Arduino can be used
to generate audio output. There is also a noTone() function to
stop any tones being generated.

The tone() function works by generating a square wave. This is
done by rapidly changing the output pin from LOW to HIGH at
specific intervals to generate the square wave at the specified
frequency. The piezo element reacts by moving a metal element
inside the housing when a HIGH signal is received, and this
movement of the element generates the tones that you hear.

Our program is simple. We generate a tone for a specific
interval, then we delay() to wait for that tone to finish playing,
and sometimes a little extra time for a pause when no tone is
playing. The frequencies for this musical phrase were found by
using Google, so there wasn't any guesswork involved.

On a technical note, the Arduino Core uses the AVRs timer
interrupts to precisely trigger the changes in output, so other
operations that use timers, such as PWM, will not work correctly
while the tone() is operating.

You can generate your own tones by using a loop to trigger the
LOW and HIGH signals using digialWrite() and by using
delayMicroseconds() in between to generate the proper
frequency, but that is left as an exercise to the reader.

Copyright ©2012 by Nicholas Borko. All Rights Reserved.
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

